
J. Fluid Mech. (1968). v01. 31, part 1, pp .  65-94 

Printed in Great Britain 
65 

A transformation for compressible turbulent boundary 
layers with air injection 

By L. 0. F. JEROMIN 
Engineering Department, University of Cambridge? 

(Received 28 January 1967) 

The transformation proposed by Coles for correlating the compressible turbulent 
boundary layer on a solid surface with a given incompressible layer has been 
extended to the case of a porous surface with air injection. However, unlike 
Coles’s work, the new transformation does not use the empirical concept of the 
sublayer to define one of the transformation parameters. Instead this parameter 
can be defined in terms of the stream function at  the wall, and so is directly re- 
lated to the injection rate. The present paper concerns the transformation for the 
boundary layer with constant pressure and zero heat transfer, but the possibility 
of extending the transformation to flows with pressure gradients and heat trans- 
fer is mentioned briefly. 

Comparison with experiments shows that the new transformation success- 
fully relates cf, 19 and the fully turbulent part of the velocity profile with their 
corresponding incompressible values for a wide range of Mach numbers and 
injection rates. 

1. Introduction 
When fluid is injected through a porous wall into a turbulent boundary layer 

there are large changes in the characteristic of the layer. In particular the velocity 
profile is deformed in such a way that the skin friction and heat transfer coeffi- 
cients are reduced. Further the actual flow of the injected fluid through the porous 
wall is a powerful method of cooling the wall. Thus fluid injection has wide engin- 
eering applications for cooling bodies exposed to high temperature gas streams, 
including the case of aircraft flying at  high supersonic speeds. In  this latter case 
the theoretical treatment of the problem involves the solution of the compres- 
sible turbulent boundary layer with injection of fluid (which may be different 
from the main stream fluid) at  the wall. This is a formidable undertaking. How- 
ever, there have recently been considerable developments in the corresponding 
incompressible problem (see, for example, Black & Sarnecki 1958; Stevenson 
1963; McQuaid 1966). The purpose of the present paper is to extend the trans- 
formation techniques between compressible and incompressible boundary layers 
to the case of injection, and hence to make use of the incompressible knowledge. 

A number of authors have proposed relatively simple transformation concepts 
for turbulent boundary layers assuming that the stream functions for the 
compressible flow and for the incompressible flow are the same. But these trans- 

t Now at Messer Griesheim GmbH, Frankfurt/Main, Germany. 
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formations are too restrictive for the present purpose. A notable advance in 
the transformation technique was made by Coles (1968) who assumed that the 
stream functions in the two corresponding flows were not equal. This work was 
further extended to flows with pressure gradients and heat transfer and rational- 
ized by Crocco (1963). Obviously the fact that the stream functions are not equal 
in the two flows increases the mathematical complexity of the transformation, 
but reduces the number of arbitrary assumptions. Thus the transformation of 
Coles and Crocco is practically free of any restrictions on the physical model. 
It is true that the substructure hypothesis does represent a compromise with the 
unknown nature of turbulence, but this hypothesis may be readily adapted as 
the theory of turbulence is developed. Recently Baronti & Libby (1966) investi- 
gated the correctness of a point-to-point mapping of compressible turbulent 
boundary-layer flow into its corresponding incompressible flow using Coles’s 
transformation. They did not use Coles’s substructure hypothesis but preferred 
t o  employ the assumption that the Reynolds number associated with the laminar 
sublayer is invariant. Baronti & Libby succeeded in correlating the compressible 
boundary-layer profile (up t o  a Mach number of M = 6) with the ‘law of the wall ’ 
for the region where it normally holds for incompressible flow. Discrepancies 
arose, however, when they attempted to transform the outside part of the com- 
pressible boundary-layer profile into the ‘velocity defect law ’. They attributed 
these discrepancies to favourable pressure gradients, but it is possible that the 
reasons for the failure of the transformation in connexion with the velocity defect 
law are deeper and might be related to the sublayer concept itself. 

Rosenbaum (1966) tried to extend Coles’s transformation concept to compres- 
sible boundary layers with heat transfer and mass diffusion. He assumed that 
the incompressible flow field is completely known when the boundary layer is 
divided in the usual manner into a laminar sublayer, a region where the ‘law 
of the wall’ holds and another where the ‘velocity defect law’ is valid. The cor- 
responding compressible flow field can easily be determined from the incompres- 
sible one with the help of Coles’s transformation which is strictly valid in the 
form used there for zero heat transfer. However, contrary to Crocco,-f Rosen- 
baum used the now-known compressible flow field to solve numerically the 
equations of conservation of energy and species assuming that the compressible 
boundary layer with heat transfer and mass diffusion can be reduced completely 
to a corresponding incompressible flow with zero heat transfer and zero mass 
diffusion. This has not been proved. Despite his questionable assumptions 
Rosenbaum obtained reasonable agreement between experimental data and 
his theoretical values for some boundary-layer characteristics. 

1.1. Present investigation 

The topic of the present paper is the extension of Coles’s boundary-layer trans- 
formation to compressible turbulent boundary layers with air injection a t  the 
wall. The present paper concentrates on the case of zero pressure gradient and 

Crocco introduced transformation rules for the enthalpy distribution as well in order 
to transform the energy equation. 



Compressible turbulent boundary layers with injection 67 

zero heat transfer. The transformation has been extended by the author to 
flows with heat transfer and pressure gradients (for details see Jeromin 1966a) 
The validity of the transformation has been checked in $ 3  for the simplest 
case of zero pressure gradient and zero heat transfer by transforming measured 
compressible boundary layers into their corresponding incompressible form 
making use of Stevenson's 'law of the wall'. In  this way the skin friction coeffi- 
cient has been evaluated with reasonable accuracy. 

2. A boundary-layer transformation for the turbulent boundary layer 
with air injection 

2.1. The tranfopmation equations 

The starting point for the present investigation was Coles's transformation 
concept. He introduced the three transformation parameter (T, 7 and 5 which are 
defined in terms of the stream function $ as follows: 

where 

and P* aY* q(x)  = -__ 
P a Y 7  

dx* 
EM = 

t (2.3) 

(2.3) 

(2.4) 

(the superscript * denotes incompressible flow), where u is the velocity in x- 
direction, u the velocity in y-direction and p the density. Coles showed that the 
three functions g, 7 and [ were functions of x only, or rather, that (T,x* and 
ay*/p ay are independent of y if second-order derivatives are neglected. 

The present analysis deals with boundary layers along a flat plate. The equa- 
tions describing the compressible turbulent boundary layer along a flat plate are 
used in the present form: 

continuity equation 
apu apu --+- = 0; 
ax ay 

au au ap aT momentum equation pu-+pv- = --+--' ax ay ax ay) 

with 

where p is the pressure, T the shear stress and p the viscosity. 

unless otherwise specified. 
Every value in the equations (3.5) and (2.6) is regarded as a mean value 

5 - 2  
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The idea of the transformation is now to establish a correspondence with the 
simpler form of incompressible flow which has been more thoroughly investi- 
gated experimentallly as well as analysed theoretically. Corresponding to the 
relationships (2.5) and (2.6) the incompressible flow is described by the following 
equations: 

continuity equation 

momentum equation 

with 

au* av* --+- = 0 ,  
ax* ay* 

au* ~ 

aY* 
= p* __ - p u v and p*= constant. 9 *' Q' 

(2.5") 

(2.6*) 

In order to apply the transformation one needs relationships which express 
the transformation parameters CT, 7 and 5 as functions of the boundary-layer 
characteristics. These relationships will not be derived here, since they are very 
similar to those already found by Coles (1962) and Crocco (1963). The only 
difference is the complicating condition of fluid injection at  the wall which intro- 
duces additional terms. The main equations for the transformation parameters 
are 

where the subscript co refers to free-stream condition, and w to the wall condition. 
The boundary-layer thickness 6, the skin-friction coefficient c f ,  the displacement 
thickness S* and the momentum thickness 0 are defined in the usual way. 

The equations (2.7) and (2.8) can be found by introducing (2.1) to (2.4) in (2.5) 
and (2.6), (2.5*) and (2.6") respectively. It can be shown (see Jeromin 1966~)  
that a correspondence for the inertia and pressure gradient terms in (2.6) and 
(2.6*) can be established mathematically exactly. The weak point at  the trans- 
formation is the deduction that the shear stress terms can be transformed as well, 
which cannot be proved in general because of the unknown shear stress distribu- 
tion in physical as well as mathematical terms. Consequently one cannot be 
sure if the shear stress distribution of the compressible boundary layer can be 
reduced to the corresponding incompressible one and hence if 

(3.9) 

really holds.? The validity of (2.9) and hence the final proof for a general applica- 
tion of the transformation can only be checked by measuring shear stress profiles 

t For the derivation of (2.8) see Coles (1962) or Jeromin (1966a). 
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in compressible flow and reducing them to those in corresponding incompressible 
flow. 

It must be pointed out here that all the relations (2.1) to (2.9) are independent 
of any viscosity law and energy equation so that they can be applied to laminar 
and turbulent flow and to flow with and without mass transfer. 

Up to this point the present analysis is very similar to those by Coles and Crocco. 
The conclusions now drawn from the equations (2.1)-(2.8), and the application of 
the transformation itself, run along a different path adapting the problem to 
the more special case of turbulent boundary layers with fluid injection. 

2.2. Evaluation of the transformation parameters for zero pressure 
gradient and zero heat transfer 

2.2.1. Differential equation for the parameter cr 

Only two relationships have been given so far for the three transformation 
parameters cr, 7 and E ,  namely the equations (2.7) and (2.8). These equations 
reduce for the case of constant pressure to 

0- u* u*, 
= constant ---- - -  - 

7 u, 

with uz = constant, u, = constant and to 

(2.8') 

The physical interpretation of the relation cr17 = constant is the condition that 
the compressible flow with zero pressure gradient transforms into an incompres- 
sible flow with the same physical feature of vanishing pressure gradients (for 
details of the choice c/y  = constant see Coles 1963 and Crocco 1963). Equation 
(2.7) means simply that the velocity scale between the two flows can be chosen 
arbitrarily without influencing the transformation at  all. Consequently i t  is not 
necessary to prescribe the physical properties of the incompressible flow except 
for u*,, p* and p* which can be chosen arbitrarily as long as the density is a func- 
tion of the temperature alone. Moreover, Crocco pointed out that one obtains 
the same transformation if the incompressible fluid chosen is a liquid or a gas. 

So far one has found two relationships for the three unknown parameters 
a , ~  and 5. 

One now needs a third relationship to complete the transformation. This 
third relationship will probably vary from problem to problem and a t  the moment 
cannot be derived from the equations of motion. For example, Coles showed that 

dcrldx = 0 

for laminar boundary layers and turbulent wakes, and he introduced a sub- 
structure hypothesis as a third relationship in order to apply the transformation 
to turbulent boundary layers. 

Present transformation. Another approach to the problem, completely different 
from Coles's substructure concept, can be used for the case of fluid injection using 
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the definition equation ( 2 . 2 ) .  The stream functions $ and $* must hold all 
through the boundary layer and so a t  the wall. Thus 

and 

X' 

$6 = -Io p*v;dx* (2.10") 

(2.10) 

when the virtual origin of the flow is set to zero for both the incompressible and 
compressible flow which is no restriction to the problem. The transformation 
parameter can then be written as 

(2.11) 

by assuming that p*vz and pwv,  are constant along the wall. It should be noted 
here that the choice of p*vz = constant and pwvW = constant is quite arbitrary. 
The injection mass flow along the wall was set constant because this condition 
corresponds to the experimental investigation which will be analysed in $ 3 with 
the help of the present boundary-layer transformation. In principle the trans- 
formation parameter c can be defined more generally replacing the numerator 
in (2.11) by (2.10*) and the denominator by (2.10). 

A disadvantage of the definition of the transformation parameter c in terms 
of the stream function (2.10) and (2.10") is the fact that flows without mass trans- 
fer are not contained in the present analysis as a limiting case. For zero injection 
(2.1 1) becomes indeterminate even when one tries to  approach this limiting case 
by assuming very small injection rates pwvw and p*vz. Consequently another 
relationship has to be used to obtain c for F* = 0 and F = 0 which might be for 
example Coles's substructure hypothesis (F* = vz/uz, P = pwvw/pm,u.,). 

Equation (2.11) is the third relationship defining, together with the equations 
(2.7) and (2.8')) all three transformation parameters.t It is postulated here that 
a compressible boundary layer with fluid injection transforms into an incompres- 
sible one with fluid injection a t  the wall. Moreover, it is assumed that an in- 
compressible flow with a given injection mass flow p*vz can be chosen arbitrarily 
within a certain range without affecting the transformation, as will be shown 
later when applying the law of corresponding stations (see $2.2.2). From (2.11) 
it can be deduced that a transformation parameter is defined for any given 
compressible flow with an injection mass flow pwvw and a t  a Reynolds number 
R, (in other words the variable x is fixed, too) together with corresponding 
incompressible flows with any assumed injection mass flow p*vz. A given com- 
pressible flow with given pw vw and x can be transformed into an incompressible 
flow with p*v:, but the location x* in the transformed flow corresponding to 
the point x in the compressible flow changes with the injection mass flow p*vz 
in order to fulfil equation (2.11); or once x* is chosen the injection mass flow 

t Equation (2.11) fulfils the condition that v is only dependent on 2, x* respectively, 
since p*u: and pwvw are only functions of x*, x respectively and independent of the co- 
ordinate y. 
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p*v$ isdefined. Sinceit is theaim of a transformation to use established incompres- 
sible laws, only transformations for which both flows can be physically realized 
will be considered. 

It will be here assumed that a given compressible flow at a certain Reynolds 
number R, will transform into incompressible flows a t  fairly high Reynolds 
numbers, say in the order of lo7 where this number is chosen quite arbitrarily. 
Now it was said that the compressible flow can be transformed into an incompres- 
sible flow with any injection rate. It is quite possible that a number of such 
flows are separated at this high Reynolds number,? most likely those with 
higher injection rates, so that the physical reality limits the concept and hence 
the number of possible incompressible flows. There might be still a pure mathe- 
matical transformation possible for the case of separation, but since it is the 
aim of a transformation to use only established incompressible laws, this prospect 
is only of academic interest. 

Differentiating equation (3.1 1)  with respect to x and making use of (2.4) gives 

e - - P+-,*L] * * l a x *  
dx  pwvw x dx 22 ' 

and from (2.11) it follows that 

or alternatively (2.12) 

Eliminating 6 from (3.12) and (3.87, and assuming that c?(x*), 8*(x*) and all 
properties of the incompressible flow are known, one finally obtains 

dcr a2- Ao 

where 

(3.13) 

(2.14) 

The integration of (2.13) gives the variation of the transformation parameter o 
with x. A closed solution for (2.13) can be obtained for Dutton's (1958) flow with 
asymptotic suction where = -2vz /uz ,  v$ = constant and 8" = constant. 
This possibility will be mentioned here only for reason of completeness, since the 
main task of the present analysis is it transformation for the compressible 
turbulent boundary layer with injection. I n  general, (2.13) cannot be solved 
analytically, but a numerical method can be used instead. If o(x)  is known the 
other two parameters can easily be calculated using (2.7) and 

(2.15) 

Equation (2.15) is obtained by introducing (2.13) in (2.8') and eliminating 6. 
t This statement will be discussed in more detail in $2.2.2. 
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Finally, the transformations for the most important boundary-layer para- 
meters will be specified since they will be used later: 

cf* =- 1 __- P*P*PcC skin friction coefficient 
0- PWPWP* Cf; 

(2.16) 

momentum thickness e* = 7-e;  P* (2.17) 
P* 

displacement thickness 

skin friction 

Reynolds number per unit length 

Reynolds number based on x 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Reynolds number based on 0 R$ = 0- P m  - R,; 

longitudinal co-ordinate x p* v; ; 

(2.22) 
P* 

x* - PWVU? (2.23) 

normal co-ordinate 

injection mass flow normaJ to the wall at  y = y* = 0 

(2.24) 

(2.25) 

2.2.2. Starting condition for the integration of equation (2.13) 

A starting condition must be known before (2.24) can be integrated. This 
relation is most likely an empirical one considering the incomplete knowledge 
of the turbulent mechanism. So far it has not been necessary to introduce an 
empirical relationship in order to define directly a transformation parameter. 
The empirical relations cf* =f(B:)  and 8* =f(Rz) cannot be regarded as 
relationships defining a transformation parameter itself but only as relation- 
ships which have to be known before the transformation can be applied. In that 
sense they are no empirical restriction to the definition of the transformation 
parameter as expressed by the equations (2.7), (2.8') and (2.11). 

A successful method for the evaluation of a starting condition was derived 
from the transformation of the skin friction coefficient (2.16) and the definition 
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equation for cr (2.11)' which compares experimental data obtained in incom- 
pressible and compressible flow with fluid injection. By introducing (2.1 1) into 
(2.16) one obtains 

or 

with F = pwvw/pmum and F* = vz/..*m. 
Coles obtained a similar relationship for flow without injection 

(2.26) 

(2.27) 

which he called the ' law of corresponding stations' so that (2.26) ca.n be regarded 
as another form of the 'law of corresponding stations' for flows with fluid 
injection. It might be worth noting that (2.27) holds for flows with air injection 
as well. Equation (2.26) is more useful than (2.27) for the present process of 
evaluating a starting condition for the integration of (2.13) since it expresses the 
starting point in terms of x as necessary and not in terms of 8. 

Equation (2.16) can be written as 

or finally cr = A(cf /F)/(c; /P*) .  (2.28) 

The equations (2.26) and (2.28) together present an empirical method for 
evaluating a starting condition for the integration. 

Equation (2.26) can be interpreted physically by saying that a correspondence 
between incompressible flow and compressible flow exists a t  positions where the 
product (pm,um/pw,uw) cf F R ,  of the compressible flow is equal to the product 
cf* F* R,* for the corresponding incompressible flow. Hence known boundary- 
layer characteristics like the skin-friction coefficient c f  or the momentum thick- 
ness 8 can be used with the help of the equations (2.16) or (2.17) to determine the 
transformation parameters when the corresponding positions in both kinds of 
flows have been found for which a transformation exists. I n  the following this 
concept will be used to determine a starting condition for the integration of 
(2.13) by plotting c f /F  against (pm,um/pw,uw) c,FR,, c;/F* against c;-* F*R$ 
respectively, and comparing incompressible and compressible data a t  

c;" F*R$ = P* cf  F R ,  = constant. 
PWPW 

The parameter in such a diagramt is the injection rate F or F*. Such a diagram 
is shown in figure 1. The incompressible data for the parameter F* are represented 

f These co-ordinates have been chosen according to (2.26). As ordinate could be chosen 
cf or c,F instead of cr/P without affecting the result for cr as defined by (2.28) ( c f / F  is more 
convenient on mathematical grounds by considering (2.28)). The essential meaning of (2.26) 
is that one set of data (compressible) can be compared with another one (incompressible) at  

P A  c f ~ ~ ,  = ~ ~ * F * R T  = constant. 
P W P W  
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FIGURE 1.  Correlation between compressible and incompressible flow obtained by ' law of 
corresponding stations'. 

F X  103 M 
Symbol [-I  [-I Investigator 

Danberg 6.2 'I rn 0.8756 
w 1.745 6.2 
B 2.444 6.3j 
D 0.570 
4 0.895 
b 1.271 
f.:> 0.653 + 1.172 

Jeromin 
3.5 
3.5 
3.5 + 2.111 

1964) 

1966b) 
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by the solid lines whereby the value of c f / P  decreases with increasing cFP*RZ 
for P* = constant. The influence of the parameter F* in figure 1 is such that an 
increase of P* causes a shift of the curves towards the left-hand corner in the 
diagram. The solid lines are evaluated from McQuaid’s (1966) experimental data 
(see appendix). The reason for this choice is the fact that these data have to be 
considered as the most reliable ones at  present available as the investigation by 
McQuaid (1966) has shown. Unfortunately only a limited amount of experimental 
data is available for compressible turbulent boundary layers along flat plates 
with air injection and zero heat transfer. These are the investigations of Danberg 
(1964) at  a Mach number of 6.2 and Jeromin (1966b) at  a Mach number of 
2.5 and 3.5. It must be noted that both sets of data are not measured at  exactly 
adiabatic wall conditions. Danberg’s wall temperature is slightly lower than the 
adiabatic wall temperature, whereas Jeromin’s data are measured at wall tem- 
peratures slightly above adiabatic. But these effects can be considered as being 
probably insignificant in their influence on the skin-friction coefficient. Possible 
effects lie certainly within the range of uncertainty for cf considering the fact 
that the skin-friction coefficients are subject to a possible error of the order of 
at  least k 10 % (for high injection rates the error could easily increase to rt 40 yo), 
since they are evaluated from the slope a t  the wall au/ay (Danberg 1964), or 
the momentum equation (Jeromin 1966 b), respectively. The compressible data 
are marked by the symbols on figure 1. The Reynolds number influence on the 
compressible data has been neglected so that only mean Reynolds numbers are 
considered and hence only points appear in figure 1 instead of lines. The reasons 
for this approximation are: 

(i) the Reynolds number range covered by the experimental investigations 
(Jeromin: 1.6 6 R, x 10-7 < 1.8) is quite small compared to the range covered 
in incompressible flow; 

(ii) Danberg’s published data for the skin-friction coefficient are subject to 
a scatter which has sometimes opposite tendencies to the Reynolds number 
influence. 

Depending on the possible error for the skin-friction coefficient the symbols on 
figure 1 representing the compressible flow might shift. The error becomes quite 
large for the relatively high injection rate of F = 2.111 x a t  M = 3.5 and is 
indicated by the dotted line around the corresponding symbol. 

A few words must be said about figure 1 since it presents experimental evidence 
for possible transformations from compressible to incompressible flow. The 
region of turbulent flow which can be observed physically is limited on the left- 
hand side on figure 1 by a line, or better a region of transition to laminar flow and 
on the right-hand side by a maximum for every injection rate. Beginning from 
the maximum, cf*P*R,* decreases again for decreasing cf*/F* until the point with 
c; = 0 is reached which cannot be shown on figure 1 because of the logarithmic 
scale. The line of maxima in figure 1 must be regarded for the time being as a pure 
qualitative one which is not yet justified by any theory or experimental data at  all 
and partly extrapolated for higher injection rates from McQuaid’s data. The 
empirical relations defining the skin-friction coefficient in the presence of fluid 
injection as derived by Jeromin ( 1 9 6 6 ~ )  from McQuaid’s (1966) data are rather 
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doubtful for high injection rates and especially for high Reynolds numbers so 
that the lines for F* > 4.8 x have to be discounted until more experimental 
information for this region is available. The existence of the maxima especially 
have to be proved more generally, since it would mean that a compressible flow 

FIGURE 2.  Effect of Mach number on transition point for flow along solid flat plate. x , 
Czarnecki &. Sinclair (1955); 0, Schemer (1951); 0, Higgins & Pappas (1951); 0, Eber 
(1952); A, Van Driest Oi Boison (1955). 

at a Reynolds number R, could be transformed into two corresponding Reynolds 
numbers in an incompressible flow a t  the same injection rate. For example, a 
point in a compressible flow characterized by (p,,u,/p,,uW) c j  FRz = 3 can be trans- 
formed to two different points representing incompressible flows with an injection 
rate of F* = 4.8 x namely with cf*/F* = 0-057 and cf*/P* = 0.013 and hence 
with two different Reynolds numbers R:. The limiting lines in figure 1 are most 
probably influenced by compressibility and heat transfer effects. For example, the 
critical Reynolds number decreases with increasing Mach number and changing 
adiabatic wall condition as shown in figure 2 (see also Schlichting 1960) where 
the critical Reynolds number is plotted against the Mach number. 

Transformations from one flow to another are possible within this range 
limited by the maxima and transition lines. An example might clarify the situa- 
tion. A compressible flow characterized by the point K at 

can be transformed to corresponding incompressible flows with at least all the 
injection rates F* considered in figure 1. On the other hand a compressible flow 
at the point L in figure 1 at c: F*R: = (pm,um/pw,uw) FcfR ,  = 100 near the line 
of maxima can only be transformed into flows with injection rates F* < 1.8 x 10-3 
since no flow with higher injection rates F* exists in this range. 
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The transformation parameter CT was evaluated from figure 1 for 

C; F*R; = (prnprn/pw/Lw) cf FRx = 10 

77 

comparing the available compressible data with those for incompressible flow 
making use of (2.28),  where A is mainly a function of the Mach number and the 
injection rates.? The compressible data were extrapolated to c; F*R,* = 10 
assuming that they show the same tendency with (pmpm/pwpw) cf FRx as the 
solid lines representing the incompressible flow with c; P*R,*. It was deduced 
from (2.11) that one can choose incompressible flows with injection rates P* 
arbitrarily. Applying this concept to figure 1, one can read from the diagram a 
set of values at c;”F*R,* = (prnpm/pwpw) cf  PRz = 10 for every compressible 
flow characterized by one value c J F .  Hence the corresponding incompressible 
flows are characterized by the set of values and cover, in the present case, 
a range of injection rates 0.8 < F* x 103 < 3.6. The transformation parameter 
can be determined now from (2.43) knowing c,/F, A and a set of values c;/F*. 
The result is plotted in figure 3 against F*/F where the ordinate was given pre- 
ference against any other because this plot seems to suppress all Mach number 
effects. ( F  increases steadily in the direction of the arrow in figure 3 independently 
from which set of data for compressible flow in figure 1 CT was evaluated.) It also 
gives CT = f ( F * / F )  for F = constant, which is a very convenient relationship to 
express the starting condition for the integration of (2.13) in an explicit form. 

But it must be stressed here that there is still the possibility that this clear 
tendency expressed in figure 3 might be somehow fortuitous, since the value for 
(r is subject to the same error as the skin-friction coefficient itself. The error 
for CT can be considerable for CT < 2.5 in the region of the steep gradient d(P*/F)/do 
so that especially for higher injection rates ( F  in the order of 2 x the curves 
might shift. To clarify the situation it might be worth giving an example. 
Choosing an injection rate for the incompressible flow of F* = 2 x results 
in possible errors of 

ACT = k 0-15 for F = 0.570 x 10-3 at M = 2.5, 

ACT = & 0.5 for F = 2.111 x at M = 3-5. 

The error ACT decreases when higher injection rates F* for the corresponding 
incompressible flow are chosen. But, nevertheless, the correlation in figure 3 is 
surprisingly good when one neglects the possible errors for the skin-friction 
coefficient and uses only the published data. Data taken by two different in- 
vestigators at  three different Mach numbers for each of three injection rates have 
been correlated in figure 3 so that the well-defined tendencies (especially for the 
parameter F independent which Mach number was chosen) exhibited in this 

t c; F* R,* = 10 was chosen because most of the experimental date for compressible 
transpired boundary layers are measured in the range 7 < (prn,uffi/pw,uw)cfFRz < 20. 
One could in principle compare incompressible and compressible data a t  other values 
c:F*Rz = constant and so evaluate the transformation parameter by a sort of inter- 
polation method for various Reynolds numbers instead of integrating (2.12). This concept 
has been checked for c:F*R,* = 3 by comparing the interpolated results for u with those 
evaluated from (2.13) using the starting point c:F*R,* = 10. The results agreedwithin 10% 
f o r P  = 1.271 x 10-3atM = 2.5. 
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diagram can be partly employed for the justification of the postulate in 53.2.1 
that a compressible flow can be transformed in a corresponding incompressible 
one with an injection rate chosen arbitrarily. 

9 

n 
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6 
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2 - 
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0 7  
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0.3 
1 2 3 4 5 6 7 8 9 1 0  20 

FIGURE 3. Empirical evaluation of a starting-point for the integration of (2.13) making use 
of the ' law of corresponding stations' and available experimental data. F* x los (McQuaid, 
1966): 0, 0.8; x , 1.0; 0, 1.2; 0, 1.4; A, 1.6; +, 1.8, w, 2.0; A ,  2.2; V, 2.4; *, 2.6; 'I, 2.8; 
0, 3.0; D, 3.2; ,~>, 3.4; 0, 3.6. 

+ d - I  

2.2.3. The determination of the transformation parameters 

by multiplying (2.13) by 1/R*. Thus one obtains 
In  performing the integration it is convenient to use dimensionless equations 

d a  ~ ' - A u  a = aR2 + 2AF*(R:/cf*) - 2A(R: Jc?) * 
( 2.13') 
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These equations have been integrated on the Titan (Atlas 11) Computer in the 
University Mathematical Laboratory, Cambridge, for both parameters F and F*. 

In  every case, F is held constant and F* is varied from its initial value of 
0.8 x The highest injection rate F* for an incompressible flow considered 

FIGURE 4. Variation of the transformation parameter (T with the 
Reynolds number R,. 

in this analysis was F* = 3 x lop3. The cahdation results in a set of tables or 
graphs for every Mach number and injection rate F and only a typical case will 
be given here. The transformation parameter (calculated from (2.13')) is plotted 
against the Reynolds number R, on figure 4. Once g is known the other transfor- 
mation parameters 7 and can be calculated from equations (3.7) and (2.8'). 
They ar0 plotted on figures 5 and 6. These three graphs represent the key to the 
transformation, which in this particular case is for compressible flow along an adia- 
batic wall at a Mach number of 3.54 and an injection rate of F = 1.172 x 10-3 
into a correspondingincompressibleflowwithinjection rates of 0.8 < I?* x lo3 Q 3, 
a free-stream velocity of uz = 16.0 [m/s], a temperature t* = 20 ["C] and a 
pressureof p* = 1 [atm]. The quantities for the incompressible flow may be chosen 
arbitrarily as indicated above in the derivation of the equations. 

The transformation parameter cr varies only very little with the Reynolds 
number R, for F rz 2 x for all injection rates for the compressible flow 
investigated. The influence of the denominator on daldR, is therefore less 
significant than for injection rates considerably different from 2 x Since 
the empirical relationships defining cf* and 0" which are subject to some uncer- 
tainties, have only a slight influence on the transformation parameter (r and 
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R,  x lo-" - 1 

FIGURE 5 .  Variation of the transformation parameter 1 with the 
Reynolds number R,. 

FIGURE 6. Variation of the transformation parameter 6 with 
Reynolds number R,. 
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hence on the transformation itself, an incompressible flow with an injection 
rate of P* = 2 x 10-3 has been mainly chosen in $ 3  when the transformation will 
be applied to measured compressible turbulent boundary layers. 

2.2.4. Coles's substructure hypothesis and the present transformation 

Coles needed a third relationship in order to establish his transformation. 
Thus he introduced the sublayer hypothesis. This sublayer, or substructure, 
analysis was based on the 'law of the wall' for boundary layers along solid sur- 
faces, namely u* 1 y*u: 

- = -In-+C, 
U,* K V* 

(2.29) 

with the skin friction velocity u: = (7;/p*)$, the mixing length theory constant 
K and C = constant, assuming that there exists a sublayer Reynolds number 
defined by a suitable numerical value (indicated by the subscript s )  for the pro- 
duct 

(2.30) 

(for details see Coles (1962)). The value of R, was determined from an analysis of 
experimental data. Furthermore, Coles found that the viscosity had similar 
properties to the values of crlp* required to  correlate measured skin-friction 
coefficients in compressible flow with the corresponding incompressible values. 
Thus he assumed that crIp* was in fact equal to p, so that 

cr = p*/p,. 

P"/Pw ru*/rum 

Further, since p, < p, < pw, cr must lie in the range 

and tend to p*/pw for increasing Reynolds number. 
Hence a potential starting point for a formal extension of Coles's substructure 

hypothesis to the present problem would be Stevenson's (1963) 'law of the wall' 
for transpired boundary layers 

and determining the product 

(2.31) 

(2.33) 

corresponding to (2.30). 
The essential result of this approach is that IT can again be put equal to p*/ps 

when one considers several secondary conditions (for details see Jeromin 1966 b). 
Hence the transformation parameter cr would lie between the same limits 
as for the solid wall case: cr would approach p*/p, for high Reynolds numbers 
and p"/pm for low Reynolds numbers, say those representing laminar flow, 
independently of which injection mass flow P* has been chosen. This result is a 
contradiction to equation (2.13) which defines CT such that 

6 Fluid Mech. 31 



82 L. 0. F. Jeromin 

(i) (T is steadily increasing for R, = constant and increasing F* and is 
not approaching a limiting value for high or low Reynolds numbers as 
predicted by the substructure hypothesis (see figure 4); 

(ii) an injection mass flow can always be chosen arbitrarily so that (T 

exceeds a t  least one of the limiting values predicted above. 
Moreover, the argument that G should approach ,u*/,u, for low Reynolds numbers 
is a contradiction to the present transformation concept when it is extended to 
laminar flow. Establishing a transformation for laminar flow which is based 
again on the stream functions and hence on (2.11) would lead to the result that 

1 
v = A -  

P* 4 
(2.33) 

and hence not approaching the value ,u*/,um independently of which injection 
mass flow has been chosen (for details see Jeromin 1 9 6 6 ~ ) .  

Summarizing, one can say that the substructure hypothesis is breaking down 
for boundary layers with injection. In particular the values of ~ ( x )  eventually 
found did not lie in the range ,u*/,uw < (T < p*/,um; thus it appears that for injec- 
tion on0 is not justified in identifying o/p* with ,up. 

3. The application of the transformations 
3.1. Zero injection 

I n  this section the proposed boundary-layer transformation will be applied to 
profiles measured by the author (see Jeromin 1966a). Measured profiles with 
zero injection have been analysed by applying to them the transformations of 
Spence (1960), Mager (1963) and Coles (1962) respectively. As representative 
formulae for incompressible flow were chosen Ludwieg & Tillmann’s (1950) 
skin friction law and the ‘law of the wall’ (equation (2.29)) with the constants 
proposed by Coles (1963) of K = 0.410 and C = 5.00. These two formulae give the 
best agreement with measurements in incompressible turbulent boundary layers.? 
For this purpose the measured compressible boundary-layer profiles were 
transformed into corresponding incompressible flows, the skin friction coefficient 
evaluated from well-established formulae for incompressible flow and the re- 
sultant value cf* transformed back into compressible flow. Mager’s transformation 
gives skin-friction coefficients which are much lower in the order of 50 yo than 
the experimental values for both the transformed Ludwieg & Tillmann formulae$ 
and the ‘law of the wall’. I n  the original paper Mager used another skin friction 
law c& = 0.0592 (R,*)-02 which predicts far higher skin friction coefficients 
than the formula used here so that the error in his transformation is compensated 

t There is a considerable scatter in the literature regarding the actual value of the two 
constants in the ‘ law of the wall’ (see, for example, Black & Sarnecki 1958). The constants 
seem to be highly influenced by surface roughness, turbulence level and slight three-dimen- 
sional effects-the main parameters which change from investigation to investigation. 
Coles’s constants were chosen because they are good mean values. 

t Ludwieg & Tillmann’s skin friction formula for turbulent boundary layers along solid 
flat plates is 

(index 0 refers to zero injection). 

* - 0.246 x 10-0678H’ * - 0 2 8 8  
CfO - ORB0 
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in his paper by the skin friction law with the result that the agreement is much 
better. It must, however, be stressed at this point that this skin friction law is 
obsolete and does not agree with recent measurements in incompressible flow 

28 - 

26 - 

24 - 

K = 0.410, c = 5.00 (Coles 1962) 

---‘Law of the wall’ equation (2.29) 

I ,.’A>.= 0.389, C = 4.07 (Schultz-Grunow 1941) 

“ 4  5 6 7 8 9 

+ Iny*u*/v* 

FIGURE 7. Comparison between transformed compressible turbulent boundary-layer pro- 
files measured along solid flat plates, and the ‘ law of the wall’ for incompressible flow using 
Coles’s transformation (T, > T,). 

Symbol Run M RB* R,* 
[-I [-I  [-I [-I [-I  

E 2-107 0 2.5-0.0-1.60 2.5 14,900 
X 3.5-0.0-1.60 3.5 7,930) 

Assumed corresponding 
incompressible flow 
uz = lS.O[m/s] 
t* = Z O p Z ]  

p* = 1 [atm] 
F* = 0 

and hence provides no reasonable check of a transformation. Spence’s trans- 
formation predicts higher skin-friction coefficients, but the values are of the order 
of 30 yo lower than measured data. Coles’s transformation predicts higher skin- 
friction coefficients than those experimentally determined. It must be empha- 
sized in this connexion that all these measured data are subject to an error of 
the order of at  least 10 % so that both Spence’s and Coles’s transformation can be 
considered as reasonable approximations. Two measured compressible boundary- 
layer profiles (which are representative of all measured profiles for zero injection) 
are plotted on figure 7 in the transformed stage applying Coles’s transformation 
to the ‘law of the wall’. The quantities for the chosen incompressible flow are 

6-2 
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specified on the diagrams.? The fully turbulent region could be reduced very well 
to the ‘law of the wall’ for incompressible flow. The Reynolds number Rgo for 
the transformed compressible boundary-layer profile measured at a Mach 
number of 2-5 is approximately two times higher than the one measured at a 
Mach number of 3.5 so that the whole profile for M = 3.5 is shifted to the right. 
This shift to the right with increasing Reynolds number RZo was also found for 
incompressible flow. The influence of the Reynolds number is one of the reasons 
why the outer part of the profile could not be collapsed on one incompressible 
profile. Moreover, one would expect such a reduction only by plotting the outer 
region of the profile in appropriate co-ordinates such as 

uz -u* Y* 
u:=f(is,*) 

of the ‘velocity defect law’, for example. This must remain the subject of a 
separate investigation and is mentioned here only for reasons of completeness. 

In this connexion the attention has to be drawn again to the investigation of 
Baronti & Libby (1966) which was mentioned in the introduction. They obtained 
the same excellent collapse for the fully turbulent region of compressible 
boundary-layer profiles up to a Mach number of 6 when they applied Coles’s 
transformation assuming that the Reynolds number associated with the laminar 
sublayer is invariant against the transformation instead of using Coles’s sublayer 
hypothesis . 

3.2. Present transformation 

The exact transformation presented in this paper was applied to measured com- 
pressible boundary layers with air injection assuming in the case of heat transfer 
at the wall that this effect is negligible. Only the approximate method has been 
used to study the effect of heat transfer on the transformation. It was postulated 
and partly verified for the present transformation that an incompressible flow 
with an injection rate F* can be chosen arbitrarily within a certain range. This 
postulate has been checked on figure 8 for two representative compressible 
boundary layers measured a t  a Mach number of 3.5 for two different injection 
rates (see Jeromin 1966b). These two profiles were chosen a t  random and can 
be considered as being representative for all the other profiles. The fully turbulent 
part of the compressible transpired boundary-layer profiles has been reduced 
to Stevenson’s ‘law of the wall’ for incompressible flow independent of which 
injection rate P* was chosen. Only injection rates$’* up to 3 x can be checked 
for the time being, since the transformation parameter cannot be evaluated 
accurately enough for higher injection rates. This restriction is due to the con- 
dition defining the starting point of the integration of (2.13)’ namely 

For injection rates F* higher than 3 x this condition results in a starting 
point for the integration of R?& > 4 x lo7 and hence in a Reynolds number range 

t The friction velocity u: was evaluated by transforming the compressible turbulent 
boundary-layer profile into the corresponding incompressible one and then solving ‘ the 
law of the wall’ for the transformed profile. In this manner the skin-friction coefficient will 
be obtained which fits most closely the ‘ law of the wall’. 

$F’”RZ = 10. 
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which is not covered by the empirical relations defining the skin-friction coeffi- 
cient and the momentum thickness for incompressible flow. On figure 8 the 
collapse for the fully turbulent region is excellent for all injection rates F* 
chosen. The skin-friction coefficient evaluated for these compressible profiles from 
Stevenson's 'law of the wall ' is independent of the choice of F*. Again a collapse 
for the outer part of the compressible profile cannot be expected because of 
the different Reynolds numbers R,* and Rg. This phenomenon will be discussed 
in more detail later. 

3 

I 

+ Iny*u,*/v* 

FIGURE 8. Comparison between transformed compressible turbulent boundary-layer pro- 
files with air injection and Stevenson's ' law of the wall' (T, > T,, three different p*) .  

Assumed corresponding 
incompressible flow 

u z  = 16.0[m/s] 
I G F* x 103 G 2.8 

t* = 20["C] 
p* = 1 [atm] 

R, 2: 2 x 107 

c-I [ - I  [-I [-I [-I  [ - I  

M = 3.5 T ,  > T, 

Symbol Run P* x 103 P X  103 R: x 10-6 R8 

+ 3.5-0.6-1.90 1 0.664 6.70 11,900 
* 3.5-1'2-1.90 1 1-176 13.05 16,800 

0 3-5-0.6-1.90 2 0.664 5.35 19.100 
0 3.5-1.2-1.90 2 1.176 7.67 19,700 

n 3.5-0.6-1.90 2.8 0.664 6.41 32,000 
A 3.5-1.2-1.90 2.8 1.176 9.89 35,600 
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Figure 9 is representative of all compressible boundary layers measured at 
Mach numbers of 2.5 and 3.5 with each of three injection rates F at wall tem- 
peratures slightly higher than the recovery temperature. The fully turbulent 
part of the boundary-layer profile is completely transformed again by the 
transformation. This collapse is not as good for the highest injection rate at 

ri 

I 

‘H I 

24 - 

22 - 

K =  0 
20 - 

18 - 

I6 - 

enson’s ‘law of the wall’ 

K = 0-410, C = 5.00 (Coles 1962) 

K = 0,389, C = 4.07 (Schultz-Grunow 1941) 

I t  

I I I I I I I I I 
5 G 7 8 9 

-+ lny*u;/v* 

FIGURE 9. Comparison between transformed compressible turbulent boundary-layer 
profiles with air injection and Stevenson’s ‘ law of the wall’ ( T ,  > T,). 

M = 3-5 R, = 2 x 107 

Symbol Run P X  103 R,* x 10-6 RB* 
[-I [-I [ - I  [ - I  [ - I  

T, > T, 

0 3.5-0.6-1.70 0-654 4.47 18,200 
A 3.&1*2-1*90 1.176 7.71 19,700 

3.5-2.1-1.90 2.110 12-45 20,150 

Symbol 
[-I 
0 
n 

X 

Assumed corresponding 
incompressible flow 

P * = 2 x 1 0 - 3 [ - ]  
= 16*0[m/s] 

t* = 2O[OC] 

M = 2.5 R,  = z x  107 T ,  > T, 

R,* 
[-I [ - I  [-I 1-1 

p* = 1 [atm] 

Run F X  103 R,* x 10-6 

2.5-0.5-1.40 0.570 5.47 34,300 
2.5-0.9-1 ‘60 0.910 8.05 38,300 
2.5- 1.2- 1 *80 1-270 13.28 35,800 
2 . ~ s 1 . 3 -  1.8 1 1.337 14-56 35,500 
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1M = 3.5. But this profile is nearly separating (blown-off) so that i t  is rather 
surprising that it could be reduced at all. The injection rate for the incompres- 
sible flow was chosen to be P* = 3 x The best possible skin-friction coeffi- 
cient was fitted again to these profiles by solving Stevenson’s ‘ law of the wall ’ for 
the transformed compressible flow. The skin-friction coefficient determined from 
Stevenson’s ‘law of the wall’ is independent of the choice of mass flow para- 
meter P”. 

- 3 

28 

26 

24 

Stevenson’s ‘law of the wall’ 
22 equnrion ( 2 . 3 1 )  

K = 0.410, C = 5.00 (Coles 1062; 

K = 0.126, C = 6.1 20 

18 

K = 0 389, C = 4.07 (Schultz-Grunow 1941) 
16 

4 5 6 7 8 9 

+ lny*u,*/v* 

FIGURE 10. Comparison between transformed coinpressible turbulent boundary-layer 
profiles with air injection and Stevenson’s ‘ law of the wall’ (T, 2: T,). 

M = 3.5 R, 2: 2 x 107 T, N T,. 
Symbol Run P X  103 R,* x 10-6 R,* 

[-I  [ - I  [-I  [ - I  [-I 
A 3.5-1 *2-2.90 1.204 7.60 17,400 
1 3-5-2.2-2.90 2.220 12.05 21,300 

Symbol 
[-I  
0 
A 
0 

Assumed corresponding 
incompressible flow 

uz = 16.0 [m/s] 
F * = 2 x 1 0 - 3 [ - ]  
t* = 20[0C] 

R, 2: 2 x 107 

p* = 1 [atm] 

M = 2.5 T ,  2: T, 
Run P X  103 R: x 10-6 R,* 
[-I [ - I  [ - I  [ - I  

2.5-0.4-2.70 0.416 5.61 36,800 
2.5-0.8-2.70 0.790 8.15 38,600 
2.5-1.2-2.70 1.285 13.15 37,300 
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As one would expect the transformations are best for compressible boundary 
layers measured at  exactly adiabatic wall conditions. Such profiles are plotted 
in the transformed stage on figure 10 and compared again with Stevenson’s 
‘law of the wall ’. The agreement is again excellent for the fully turbulent region. 
There seems to be a big discrepancy between the profiles measured at a Mach 
number of 2-5 and those obtained for M = 3.5, especially for the outer part of 
the profile. This applies for all the diagrams concerning Stevenson’s ‘law of the 
wall ’. The reason for this discrepancy is again the different Reynolds number for 
the transformed compressible flow. This number is about twice as high for the 
profiles obtained for a Mach number of 3.5 than those for M = 3.5. McQuaid 
(1966) showed that the profiles which he measured in incompressible flow shift 
to the right (the level of y*u:/v* increases) for increasing Reynolds number 
when the profile is plotted in Stevenson’s co-ordinates. At the same time the 
overall length of the fully turbulent region increases with an increasing R,*. 
These are exactly the same features as found for the transformed flow as one can 
see, for example, on figure 10. 

3.3. A general discussion of the results of the transformatior& 

The skin friction coefficients evaluated for the measured boundary-layer pro- 
files with air injection by applying the transformation (F* is chosen to 2 x 
to Stevenson’s ‘law of the wall’ ( c f2  in the table) and the empirical relation 
(see appendix) defining cT in (3.13) (c j3  in the table) are compared with 
experimental data in the table below for both Mach numbers investigated. 

31 

2.55 
2.53 
2.53 
2.54 

3.58 
3.56 
3.55 
3.52 

F X  103 

0 
0.570 
0.895 
1-277 

0 
0.652 
1.17 
2.11 

cfl x 103 

1.60 
1.15 
0.97 
0.725 

1.18 
0.79 
0.56 
0.37 

AC,, x 103 

5 0.10 
& 0.12 
- + 0.15 
5 0-20 

+ 0.10 

& 0.15 
0.20 

T0 .12  

cf2 x 103 

1.87 
1-08 
0.93 
0.72 

1.27 
0.71 
0.47 
0.21 

TABLE 1. Comparison of the skin-friction coefficients. 

cf3 x 103 

1.62 
1.17 
0.945 
0-73 

1.27 
0.77 
0.56 
0.35 

The agreement between the skin-friction coefficient predicted by the trans- 
formation and the one calculated directly from the momentum equation (c f l  in 
the table) is excellent at a Mach number of 2.5 for all injection rates investigated. 
The agreement is not quite as good for M = 3.5 most probably because of the 
slight adverse pressure gradient-/- (for details see Jeromin 1966 b )  which could 

t The pressure gradient can be expressed in terms of the momentum equation with 

The order of magnitude of the different terms is as follows: 

dB 
dz 
- 2: 1.6 x 10-3, F N 1 x 10-3, P N -0.05 x 10-3. 
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not be avoided for this Mach number and which is probably overestimated by the 
‘law of the wall’ compared to the momentum equation. 

The most realistic values for the skin-friction coefficient of the measured 
profiles are most probably those evaluated from Stevenson’s ‘law of the wall’ 
used in connexion with the present boundary-layer transformation. The error 
for the skin-friction coefficient determined from the momentum equation in 
creases with increasing injection rate and is included in the table in column 4. 
The possible error is considerable especially for the highest injection rate at a 
Mach number of 3-5 where the boundary layer is nearly blown off. 

Finally, ct/cfo is plotted against 2F/c,, on figure 11 and compared with all 
available experimental data. It can be deduced from this figure that the present 
boundary-layer transformation in connexion with Stevenson’s law is the only 
theoretical approach which predicts the correct order of magnitude of the Mach 
number influence on the skin-friction coefficient. 

It has, moreover, been shown that the transformation also succeeds with 
respect to the momentum thickness. On figure 12 R&/RB is plotted against F*R& 
(For details about figure 12 see appendix.) To avoid possible effects of the integra- 
tion process of (2.18) on the transformation, incompressible flows with injection 
rates F* such that d g / d x  is approximately zero (daldx + 0 for cr + A )  were 
chosen. The parameter CT is therefore not influenced by the integration process 
for which the knowledge of the momentum thickness for the incompressible 
flow is essential. The transformed values of the momentum thickness are indi- 
cated on figure 12 by large symbols, whereas the small ones represent incompres- 
sible flow; the drawn lines are R: = const. For lower Reynolds numbers RZ of 
the order of 5 x lo6 the transformed momentum thicknesses lie close to the line 
which represents the momentum thickness for the highest Reynolds number 
R,* investigated by McQuaid (1966) in incompressible flow of 2.5 x lo6. The trans- 
formed momentum thickness which lies in a much higher Reynolds number range 
for R,* than covered by incompressible data suggests that the lines R,* = const. 
still shift in the direction of the arrow with increasing Reynolds number. More 
measurements in incompressible flow are necessary to confirm this result. 

The final conclusion is that the transformation for zero heat transfer succeeds 
surprisingly well in transforming the compressible turbulent boundary layer 
with air injection into corresponding incompressible flows even for flows with 
low heat transfer rates at the wall. The present transformation concept has 
been formally extended by the author to flows with heat transfer and pressure 
gradients (for details see Jeromin 1966a). Unfortunately these transforma- 
tions cannot be applied at present because of lack of information about the 
corresponding incompressible flows so that the possibility of the extension of the 
present boundary-layer transformation to more complicated flows will be just 
mentioned here. 
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FIGURE 11. Effect of air injection on the skin friction coefficient of a turbulent boundary 
layer. 

Symbol Investigator Mach number Geometry 

+ 
X 

Mickley & Davies 

Romanenko & 

McQuaid (1966) 
Rubesin (1956) 
Danberg (1960) 
Danberg (1964) 

Jeromin (1966b) 

(1957) 

Kharchenlro (1963) 

Pappas & Okuno 
(1960) 

Rubesin (1956) 
Tendeland & 
Okuno (1956) 

incompressible 

incompressible 

incompressible 
0 ;  2.0; 2-7 

5.1 
6.11 

{:::I (“ii 4.5 

0;  2.0; 2.7 
2.7 

flat plate 

flat plate 

flat plate 
flat plate 

flat plate 

flat plate 

cone 

cone 
cone 

For theories see facing page. 
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Theories 

-,present investigation ((equation (2.31) +present transformation); 

_--- , Dorrance & Dore (1954) ; 

---, Rubesin (1956); 

_- , Spalding, Auslander & Sundaram (1964). 

4. Conclusions 
(i) The boundary-layer transformations for turbulent boundary layers with 

air injection have been presented which transform the compressible boundary- 
layer equations into corresponding incompressible ones. 

(ii) The skin-friction coefficient cf, the momentum thickness 8 and the fully 
turbulent part of the boundary-layer profile in the region where Stevenson's 
' law of the wall ' applies have been transformed into the corresponding incompres- 
sible flow. 
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FIGURE 12. The transformation of the Reynolds number R, based on the momentum 
thickness (dimensionless plot with ROO) 

Transformed compressible flow 

Symbol RUIl P* x 103 R: x 10-6 
Q 2.5-0.5-1. i o 1.2 5.6 

to 
2.5-0.5-1.100 

to 
v 2.5-0.9-1.10 1.4 8.3 

2-5-0-9-1- 100 
B 2.5-1.2-1.10 1.8 10.4 

to 
2*5-1*2-1*100 
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Symbol 
0 

Incompressible flow 
McQuaid (1966) 

Symbol RB x 10-5 
X 4.6 
0 5-7 
n 6.6 
0 7.5 

8.2 
A 9.0 
Q 11.1 

13-2 
/3 16-3 
D 19.0 
4 21.5 

23.6 ; 26.0 

Transformed compressible flow 

Run E”* x 103 R,* x 10-6 

t o  
3.5-0.6- 1-  10 1.4 4.6 

3 5-0.6-1.1 00 
3*5-1.2-1*10 2.0 6.75 

to 
3.5-1.2-1.100 
3.5-2.1-1.10 2.5 11.4 

to 
36-2.1-1 -90 

It still has to be checked if such a transformation can be established for the 
region of the profile where the ‘velocity defect law ’ holds. Another interesting 
point is to check the validity of the transformation most generally by investi- 
gating if the shear stress profiles of the compressible boundary layer can be 
reduced to corresponding incompressible ones. 

(iii) Possibilities for extensions of the transformations to  boundary layers 
with pressure gradients and heat transfer have been briefly mentioned. These 
transformations cannot be applied for the time being because of lack of informa- 
tion about the corresponding incompressible flows (for details see Jerornin 
1966a). 
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paper. Thanks are also due to Mr N. B. Surrey and Mr A. Barker and their staffs 
for their help and advice in the design and manufacture of the experimental 
equipment. 
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throughout the three academic years of the research. 



Compressible turbulent boundury luyers with injection 93 

Appendix. Empirical relations representing the incompressible flow 
The skin friction coefficient c; and the momentum thickness 8” of the incompres- 
sible flow must be known as a function of x* or R,* before (2.13) can be integrated. 
Such relations have been determined from McQuaid’s experimental data. 

The virtual origins of the analysed flows were estimated by the method pro- 
posed by Rubesin, Maydew & Varga (1951) so that the boundary-layer charac- 
teristics can be expressed in terms of R,* (for details see Jeromin 1 9 6 6 ~ ) .  Based 
on the estimated virtual origin the calculation for c; and 8” was as follows: 

(i) a polynomial R;o = f(R,*) was fitted to Smith & Walker’s (1958) experi- 
mental data by plotting RZ0 against R,* (index 0 refers to zero injection); 

(ii) the boundary-layer parameter H$ was determined by fitting a mean curve 
through all experimental data H$ = f ( R f )  as collated by Thompson (1964); 

(iii) once RZo and HZ were known, the skin-friction coefficient c70 was evalu- 
ated from Ludwieg & Tillmann’s (1950) law; 

(iv) the skin-friction coefficient CT was evaluated from cFo by putting a mean 
curve through McQuaid’s (1966) experimental data plotting c;/cT0 against 

(v) the Reynolds number Rgo and hence the momentum thickness 8* was 
determined by fitting again a polynomial through McQuaid’s experimental data 
by plotting Rgo/RZ against FRZo (see figure 12). Parameter in such a diagram 
is the Reynolds number R,* which isrepresented in figure 12 by the lines R,* = con- 
stant. The small symbols in figure 12 are McQuaid’s data. With increasing Rey- 
nolds number the lines R,* = constant shift in the direction of the arrow as 
indicated on figure 12. 
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